
Caché User 
Group (CUG)

Meeting 29/11/2016
Crowne Plaza Antwerp



Agenda

• JavaScript eats the world: introduction and technological overview

• Intro, overview and current state of the technology

• Different possible bindings to Caché (CSP, Ajax, REST, Node,js)

• Demo of a Todo app using 4 different approaches/frameworks:

• « VanillaJS »: plain HTML, JavaScript, REST calls to Caché

• Sencha ExtJS: monolithic framework, REST calls to Caché using ExtJS data layer

• AngularJS: monolithic framework, REST calls to Caché using Angular methods

• React: a view-only framework, Redux/ImmutableJS (data), 
WebSockets/Ajax/REST mode



Introduction

• What is JavaScript?

• Advantages:

• Full-Stack: use only one single language at front-end and back-end (and in Caché 
too?)

• Is unifying the development world – much easier to hire new people 

• Spans all kinds of development using the same stack: web, (mobile) apps, desktop 
(e.g. React, React Native, Electron)

• Everything starts with … Node.js (start using it as your development tool)

• Disadvantages:

• You’ll need to learn it (syntax) BUT you’ll find out it has many similarities to COS: 
flexibility, compactness, performance, …

• Can be overwhelming at first look, but you’ll soon discover that the best choices for 
building your stack are not so numerous



Did you know … it covers web, mobile apps, 
desktop?

• React: web development (Virtual DOM, JSX, components, one-way data 
flow)

• React Native: write your mobile apps in JavaScript (same JSX syntax, uses 
native components) - NativeBase (cross-platform) – supports iOS, Android, 
Universal Windows Platform, Tizen)

• Electron: write desktop apps in JavaScript for Mac, Windows & Linux

• …

https://facebook.github.io/react/
http://facebook.github.io/react-native/
http://nativebase.io/
http://electron.atom.io/


Why do I need a framework?

• You need to write your app, not a framework (don’t re-invent the wheel!)

• Work with your team in a standardized way: good frameworks enforce
(clear & maintainable) coding patterns

• A framework allows you to use all readily available source code, 
(debugging) tools, modules, … – provides you with much more options!

• Same goes for « why use Node.js as application server in between? »: 
use a very large pool of ready-to-use modules for everything you can
imagine



JavaScript bindings to Caché

You have different options:

• Using REST calls (only request/response):

• Caché’s built-in REST server running on the CSP gateway

• Using Node.js (using cache.node e.g. Express module)

REST requires many server calls, authentication/security is not trivial, work
stateless or with sessions?

• Using WebSockets (request/response objects + server push):

• From CSP (low-level or using socket.io)

• Using Node.js (using socket.io module, e.g. EWD 3)

WebSockets allow a direct « open » connection to the server, security is easier, but 
requires a stable network link (socket.io can degrade gracefully to Ajax calls)

http://expressjs.com/
http://socket.io/
http://socket.io/
http://www.mgateway.com/


JavaScript bindings to Caché – cont’d

How do I use my SQL, classes, …? What about all my « legacy » code?

No panic! You can re-use your existing code:

• Use CSP pages calling server-side methods

• Use (trivial) wrapper functions in Caché and call them from your Node.js 
code: you can use everything you like (classes, SQL, …)

• Access your globals directly from JavaScript in Node.js using the
ewd-document-store module

• Important for ISC: we need direct JavaScript support in Caché for classes, 
SQL, … (inside cache.node and as a language inside Caché too). Full-Stack
JavaScript development in Caché using one single language!

http://www.mgateway.com/


Node.js binding to Caché – Node.js

• One module (file): cache.node

• Works in-process: architecture of Caché & Node.js (x86/x64) MUST be the 
same!

• Cache.node version must also match Node.js version ranges (major!)

• Works from version >= 2008.2 onwards (!) - just use latest version

• Can also work in networked mode (Caché & Node.js on different servers)

• What about speed? Excellent results (very fast), however really native 
Caché performance in JavaScript would even be better: please vote for 
optimizing Google V8 string handling

https://nodejs.org/en/download/releases/
https://bugs.chromium.org/p/v8/issues/detail?id=5144


Node.js binding to Caché – REST

• On recent Caché versions, use REST Web applications (with CSP gateway)

• But … what about (very!) old Caché versions (pre-2008)? You can still use 
WebLink as a REST gateway: works perfectly with recent Apache 2.4 builds
for Linux & Windows (Windows: Apache Haus & Apache Lounge)

Give your legacy applications a modern facelift!

https://www.apachehaus.com/
https://www.apachelounge.com/


Asynchronous code & callbacks

What? JavaScript code doesn’t execute sequentially?

You’ll need to learn to code « event-based »

function syncFoo(param) {
… foo’s code

}
syncFoo(‘foo’);
console.log(‘syncFoo is done!’);

function asyncFoo(param, cb) {
… foo’s code
}
asyncFoo(‘foo’, function () {
console.log(‘asyncFoo is done!’);

});
console.log(‘BEFORE asyncFoo is done!’);



Useful tips

• Use front- and back-end frameworks that take care of most of the plumbing
work for you (higher-level abstraction, sessions, security, error handling, …)

• Consider Node.js (with npm/yarn) for building web applications (provides you
with automated tools to create production builds with minification, easily
including required modules, development mode with hot reloading)

• For Ajax/REST API’s: use fetch (isomorphic) where you can!

• For WebSockets: use socket.io

• The EWD 3 framework (set of Node.js modules) provides Caché binding using:

• WebSockets (can degrade to Ajax calls) (using EWD.send() method)

• using only Ajax calls (using the same EWD.send() method)

• or you can use REST API calls (using browser fetch() method)

https://github.com/github/fetch
https://github.com/matthew-andrews/isomorphic-fetch
http://socket.io/
http://www.mgateway.com/
https://github.com/github/fetch


Useful links

• The state of JavaScript in 2016

• How it actually feels to write JavaScript in 2016

• How it feels to learn JavaScript in 2016 (but don't take it too seriously!)

• Front-end: React and React Native, AngularJS, Sencha ExtJS, Ember

• Back-end: Node.js, Express (+ EWD 3 to interface to Caché)

• Node.js modules by the numbers

https://medium.com/javascript-and-opinions/state-of-the-art-javascript-in-2016-ab67fc68eb0b
https://medium.com/@kitze/how-it-actually-feels-to-write-javascript-in-2016-46b5dda17bb5
https://hackernoon.com/how-it-feels-to-learn-javascript-in-2016-d3a717dd577f
https://facebook.github.io/react/
https://facebook.github.io/react-native/
https://angularjs.org/
https://www.sencha.com/products/extjs/#overview
http://emberjs.com/
https://nodejs.org/en/
http://expressjs.com/
http://ec2.mgateway.com/ewd/ws/index.html
http://ashleygwilliams.github.io/npm-by-the-numbers/
http://ashleygwilliams.github.io/npm-by-the-numbers/


Questions for the audience

• Topics for the summit next year?



CUG Benelux
Blog: http://cug-benelux.be

E-mail: info@cug-benelux.be

Twitter: @cugbenelux

LinkedIn group (discussions): CUG Benelux

Announcements, presentation slides will be posted on the CUG blog. Please also follow us on 
Twitter, join the LinkedIn group (easily become a member by joining the group) and feel free to
discuss topics online! If you have questions, suggestions for the CUG core members, you can also
contact us by e-mail.

mailto:info@cug-benelux.be
mailto:info@cug-benelux.be
https://twitter.com/cugbenelux
https://www.linkedin.com/groups/CUG-Benelux-8326071/about
http://cug-benelux.be/
https://twitter.com/cugbenelux
https://www.linkedin.com/groups/CUG-Benelux-8326071/about
mailto:info@cug-benelux.be

